

A-level CHEMISTRY

Paper 3

Wednesday 17 June 2020

Morning

Time allowed: 2 hours

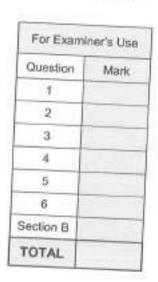
Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- · a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.


Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

You are advised to spend 70 minutes on Section A and 50 minutes on Section B.

Section A

ngines.
marks
des.
1 mark]
1
marks]

3 NO2+4 NH3 - 72 N2+6 H2O

0 1.4	Petrol vehicles have a catalytic converter which decreases emissions of oxides of nitrogen. Platinum in the catalytic converter acts as a heterogeneous catalyst.
	State the meaning of the term heterogeneous catalyst.
	[2 market
	phase to the rouckants. It small
	phase to the reaction without being used
0 1 . 5	Some carbon particulates are also formed in both diesel and petrol vehicles. Explain why carbon particulates are formed.
	[1 mark]
	Incomplete Combustion.

Turn over for the next question

	*
0 2	This question is about oxides.
0 2 . 1	Sodium oxide forms a solution with a higher pH than magnesium oxide when equal amounts, in moles, of each oxide are added separately to equal volumes of water.
	State why both oxides form alkaline solutions.
	Suggest why sodium oxide forms a solution with a higher pH than the solution formed from magnesium oxide. [2 marks]
	The oxide runs will react with
	water to form hydroxide ions,
	ruising the pt. Schumhyoside forms
	the Higher pH Solution as it is more
	soluble than magnesium hydroxide
0 2,2	Give an equation for the reaction between phosphorus(V) oxide and water. [1 mark]
	P4010 + 6H20 -> 4H3P04
0 2 . 3	In the Contact process, sulfur(IV) oxide is converted into sulfur(VI) oxide using vanadium(V) oxide as a catalyst.
	Give two equations to show how the vanadium(V) oxide acts as a catalyst in this
	process. [2 marks]
	Equation 1 \(\mathbb{V}_2 \O_5 + SO_2 -> U_2 O_4 + SO_3 \)
	Equation 2 V204 + 1202 + V205
	Equation 2

On not wri outside th box Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

0 3. 1 Explain why complexes formed from transition metal ions are co	ploured
57.5 49. 00 per	[3 marks
The Complex rons con absort	s Some
trequencies of visible light to	promote
their d orbital electrons to	a biologe
energy. The remaining frequ	a conver
The control of the co	A CONTRACTOR OF THE PARTY OF TH
THE TO THE CO	lan Seen.
The iron content of iron tablets can be determined by colorimetry.	
Method:	ž
 Dissolve a tablet in sulfuric acid. 	
 Oxidise all the iron from the tablet to Fe³⁺(aq). Convert the Fe³⁺(aq) into a complex that absorbs light of wavelength. 	
- make the solution up to 500 cm.	ength 490 nm
 Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) 	
The field of the f	complex.
0 3 . 2 Calculate the energy, in J, gained by each excited electron in the a	hsorotion at 400 nm
Speed of light, c = 3.00 x 108 m s ⁻¹	osorphorrat 450 IIII
Planck constant, h = 6.63 x 10 ⁻³⁴ J s	
AE= hC = 6.636×1534×3	×18 [3 marks]
490×109	
= 4.06×10-19 3	
1.00 ×10 3	5
Energy gained by each electron 4.06 ×10	-14

0 3.3 Describe how a calibration graph is produced and used to find the concentration of the iron(III) complex.

[3 marks]

The absorbance is measured for a range of known concentrations.

These absorbances are plotted against their concentrations. Then the unknown concentrations absorbance is recorded and the calibration curve of the graph wed to deduce its concentration.

0 3 . 4 The concentration of iron(III) in the solution is 4.66 x 10⁻³ mol dm⁻³

Calculate the mass, in mg, of iron in the tablet used to make the 250 cm³ of solution.

[2 marks]

Mass of iron in the tablet

65

mg

11

- 0 4 Cisplatin, [Pt(NH₃)₂Cl₂], is used as an anti-cancer drug.
- 0 4 . 1 Cisplatin works by causing the death of rapidly dividing cells.

Name the process that is prevented by cisplatin during cell division.

[1 mark]

DNA Replication

After cisplatin enters a cell, one of the chloride ligands is replaced by a water molecule to form a complex ion, B.

0 4 . 2 Give the equation for this reaction.

[2 marks]

(P+ (NH3) (d2)+ H2O → (PH(NH3) CU CH2OS)+CI-

0 4 . 3

When the complex ion B reacts with DNA, the water molecule is replaced as a bond forms between platinum and a nitrogen atom in a guanine nucleotide.

The remaining chloride ligand is also replaced as a bond forms between platinum and a nitrogen atom in another guanine nucleotide.

Figure 1 represents two adjacent guanine nucleotides in DNA.

Complete Figure 1 to show how the platinum complex forms a cross-link between the guaranne nucleotides.

[2 marks]

Question 4 continues on the next page

An experiment is done to investigate the rate of reaction in Question 04.2.

0 4 . 4

During the experiment the concentration of cisplatin is measured at one-minute intervals.

Explain how graphical methods can be used to process the measured results, to confirm that the reaction is first order.

[3 marks]

On a graph, plot concentration on the y-axis against time on the x-axis. Take tangents to the curve to culculate the gradients at each concentration.

Plot otherse gradients against concentration.

a straight line through the origin confirms first order

In another experiment, the effect of temperature on the rate of the reaction in Question **04.2** is investigated.

Table 1 shows the results.

Table 1

Temperature T/K	$\frac{1}{7}/K^{-1}$	Rate constant	In k
293	0.00341	1.97 × 10 ⁻⁸	-17.7
303	0.00330	8.61 × 10 ⁻⁸	-16.3
313	0.00319	3,43 × 10 ⁻⁷	-14.9
318	0.00314	6.63 × 10 ⁻⁷	-K+.2
323	0.00310	1.26 × 10 ⁻⁶	-13.6

0 4 5 Complete Table 1.

[2 marks]

0 4 . 6 The Arrhenius equation can be written in the form

$$\ln k = \frac{-E_{\theta}}{RT} + \ln A$$

Use the data in **Table 1** to plot a graph of $\ln k$ against $\frac{1}{T}$ on the grid in **Figure 2**.

Calculate the activation energy, En, in kJ mol-1

The gas constant, R = 8.31 J K-1 mol-1

[5 marks]

Figure 2

$$\frac{1}{7}$$
 / K^{-1}
 -13
 -14
 -15
 $\ln k$
 -16

Gradient=-13,125= Eq R Ea=13,125×8.31

15

0 5 A bom

A bomb calorimeter can be used for accurate determination of the heat change during combustion of a fuel.

A bomb calorimeter is a container of fixed volume that withstands the change in pressure during the reaction.

The fuel is mixed with pure oxygen in the calorimeter, ignited and the temperature change is recorded.

The total heat capacity (C_{cn}) of the calorimeter is calculated using a fuel for which the heat change is known.

In an experiment to calculate C_{cal} , 2.00 g of hexane (M_r = 86.0) is ignited. A temperature change (ΔT) of 12.4 °C is recorded.

Under the conditions of the experiment, 1.00 mol of hexane releases 4154 kJ of energy when combusted.

0 5 . 1 The heat energy released in the calorimeter, $q = C_{col}\Delta T$

Calculate the heat capacity (Ccal) in kJ K-1

[3 marks]

n Hexane =
$$\frac{2}{86}$$
 = 0.0733 msles
 $9 = 4154 \times 0.0233 = 96.6$
 $C_{Cal} = \frac{96.6}{17.4} = 7.79 \text{ kg/s}^{-1}$
 $C_{Col} = \frac{7.79}{17.4} \text{ kg/s}^{-1}$

0 5 2 When the experiment is repeated with 2.00 g of octane (M_r = 114.0) the temperature change recorded is 12.2 °C

Calculate the heat change, in kJ mol-1, for octane in this combustion reaction.

If you were unable to calculate a value for C_{cal} in Question **05.1**, use 6.52 kJ K⁻¹ (this is **not** the correct value).

[2 marks]

n Octane =
$$\frac{2}{114}$$
 = 0.0175 moles
heat change = $\frac{95}{0.0175}$ = 5417 kJ mol1

5 . 3	State why the heat change calculated from the bomb calorimeter experiment is not an enthalpy change. [1 mark]
	The pressure in a bomb Calorimeter
	The pressure in a bomb Calorimeter is not constant
5 . 4	The thermometer used to measure the temperature change of 12.2 $^{\circ}$ C in Question 05.2 has an uncertainty of \pm 0.1 $^{\circ}$ C in each reading. Calculate the percentage uncertainty in this use of the thermometer.
	Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer. [2 marks]
	Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer. [2 marks] $\frac{2 - 2}{17 \cdot 7} \times 100 = 1.64\%$
	Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer.
	Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer.
	Suggest one change to this experiment that decreases the percentage uncertainty while using the same thermometer. [2 marks]

Turn over for the next question

0
Standard electrode potentials are measured by comparison with the standard hydrogen electrode.
State the substances and conditions needed in a standard hydrogen electrode. [3 marks]
1/2 gas at 100 kPa 1 moldni3 HCl Platinum electrode
112 943
I molams tice
Platinum electrode
Z98 k
It is difficult to ensure consistency with the setup of a standard hydrogen electrode. A Cu ²⁺ (aq)/Cu(s) electrode (E ⁿ = +0.34 V) can be used as a secondary standard. A student does an experiment to measure the standard electrode potential for the TiO ²⁺ (aq)/Ti(s) electrode using the Cu ²⁺ (aq)/Cu(s) electrode as a secondary standard.
A suitable solution containing the acidified TiO ^{2*} (aq) ion is formed when titanium(IV) oxysulfate (TiOSO ₄) is dissolved in 0.50 mol dm ⁻³ sulfuric acid to make 50 cm ³ of solution.
Describe an experiment the student does to show that the standard electrode potential for the TiO ^{2*} (aq)/Ti(s) electrode is -0.88 V
The student is provided with: the Cu ²⁺ (aq)/Cu(s) electrode set up ready to use
 solid titanium(IV) oxysulfate (M_r = 159.9)
0.50 mol dm ⁻³ sulfuric acid
 a strip of titanium laboratory apparatus and chemicals.
Your answer should include details of: how to prepare the solution of acidified TiO ²⁺ (aq) how to connect the electrodes measurements taken how the measurements should be used to calculate the standard electrode potential for the TiO ²⁺ (aq)/Ti(s) electrode. [6 marks]
Firstly a solution of aciditied
Troson & Troson and disolvein
800g of Trosque and agreement to a

Volumetriz flask and make up to the mark Leither 25 cm3 or 250 cms as needed) with dejonised water Then a cell should be set up below nown volt meter Etacium Bride destrate acidified Ti Oct ay neon's copper solution (curtary) The Salt bridge is made by Soubery filter paper in an agrees Cell To determine the Khaltcell of Ti/Tiot
The reading on the volt meter should be recorded. To calculate the value we then subtract the E talf cell

	opper from the total Cell EMF he volt meter readings
-	
_	
-	
_	
-	
2	

Oa not unte outside the box

0 6 . 3 Give the half-equation for the electrode reaction in the TiO²⁺(aq)/Ti(s) electrode in acidic conditions.

[1 mark]

T: 02 + 24+ + 4e -> T; + H20

0 6 . 4 Table 2 shows some electrode potential data.

Table 2

Electrode reaction	Eº / V
$2 H^{+}(aq) + 2 e^{-} \rightarrow H_{2}(g)$	0.00
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34
$NO_3^-(aq) + 4H^*(aq) + 3e^- \rightarrow NO(g) + 2H_2O(l)$	+0.96

Use the data in Table 2 to explain why copper does not react with most acids but does react with nitric acid.

Give an equation for the reaction between copper and nitric acid.

[3 marks]

	-41	-to	21 10	9.00	
Explanatio	n The	E va	lue de	- the	Copper
		is neo			
aci	ds (-	0.74).	NATIO	- ocid	s hult
		is how			
					n read
SACON VESTORES	11		The state of the s	0	

Equation

2 NO = + 8H+ + JCn -> 2NO+4+60+ JC3+ 13

Turn over for Section B

Section B

Answer all questions in this section.

Only one answer per question is allowed.

For each question completely fill in the circle alongside the appropriate answer.

METHOD

-	
_	

WRONG METHODS

If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

0 7

When heated, a sample of potassium chlorate(V) (KClO₃) produced 67.2 cm³ of oxygen, measured at 298 K and 110 kPa

$$2 \text{KClO}_3(s) \rightarrow 2 \text{KCl}(s) + 3 \text{O}_2(g)$$

What is the amount, in moles, of potassium chlorate(V) that has decomposed?

The gas constant, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$

[1 mark]

A 9.95 x 10⁻¹

B 1.99 × 10⁻³

C 2.99 × 10-3

D 4.48 × 10⁻³

0 8 Which has a bond angle of 109.5°?

[1 mark]

A C (diamond)

B C (graphite)

C NH2

D NH₃

- 0
- Which reaction has an enthalpy change equal to the standard enthalpy of formation of silver iodide?

[1 mark]

A $Ag(g) + \frac{1}{2}I_2(g) \rightarrow AgI(s)$

B Ag(s) + $\frac{1}{2}I_2(s) \rightarrow AgI(s)$

C $Ag^{+}(g) + I^{-}(g) \rightarrow AgI(s)$

		-	-	-			
- 1							
- 1		è	٧	٠,	٠	ú	
		5	۰	۰	۰	۴,	

D $Ag^*(aq) + I^*(aq) \rightarrow AgI(s)$

1 0 Some bond enthalpies are given.

Bond	C-H	0-н	0=0	C=O
Bond enthalpy/	412	463	496	743

Which is the enthalpy change of this reaction in kJ mol-1?

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

[1 mark]

A +698

B +228

0

C -228

0

D -698

-

1 1	In which conversion is the metal reduced?		[1 mark]
	$\textbf{A} \ \text{Cr}_2\text{O}_7{}^{2-} \ \rightarrow \text{Cr}\text{O}_4{}^{2-}$	0	
	B $MnO_4^{2-} \rightarrow MnO_4^{-}$	0	
	C $TiO_2 \rightarrow TiO_3^{2-}$	0	
	$D VO_2^- \rightarrow VO^{2+}$	•	
1 2	The rate expression for the reaction between X and Y is		
	$rate = k [X]^2 [Y]$		
	Which statement is correct?		[1 mark]
	A The rate constant has units mol ⁻¹ dm ³ s ⁻¹	0	
	B The rate of the reaction is halved if the concentration of X is halved and the concentration of Y is doubled.		
	C The rate increases by a factor of 16 if the concentration of X is tripled and the concentration of Y is doubled.	0	
	D The rate constant is independent of temperature.	0	
1 3	Which statement about pH is correct?		[1 mark]
	A The pH of a weak base is independent of temperature.	0	
	B At temperatures above 298 K, the pH of pure water is less than 7.	0	
	C The pH of 2.0 mol dm ⁻³ nitric acid is approximately 0.30	0	
	D The pH of 0.10 mol dm ⁻³ sulfuric acid is greater than that of 0.10 mol dm ⁻³ hydrochloric acid.	0	

A 0.10 mol dm ⁻³ aqueous solution of an acid is added slowly to 25 cm 0.10 mol dm ⁻³ aqueous solution of a base.	³ of a	
Which acid-base pair has the highest pH at the equivalence point?		[1 mark]
A CH-COOH and NaOH		
B CH ₃ COOH and NH ₃	0	
C HCl and NaOH	0	
D HCI and NH ₃	0	
In the test for a halide ion in aqueous solution, dilute nitric acid is addition of silver nitrate solution.	ed befo	ore the
Why is nitric acid added?		
		[1 mark]
A It increases the concentration of nitrate ions.	0	
B It prevents the precipitation of silver compounds other than halides	, see	
C It prevents the silver nitrate being precipitated.	0	
D It provides the acidic solution required for precipitation.	0	
Which shows the major product(s) formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide?		[1 mark]
A NaCl only	0	
B NaClO only	0	
C NaCt and NaCtO	6	
D NaCl and NaClO ₃	0	
	O.10 mol dm ⁻³ aqueous solution of a base, Which acid-base pair has the highest pH at the equivalence point? A CH ₃ COOH and NaOH B CH ₃ COOH and NH ₃ C HCl and NaOH D HCl and NH ₉ In the test for a halide ion in aqueous solution, dilute nitric acid is add addition of silver nitrate solution. Why is nitric acid added? A It increases the concentration of nitrate ions. B It prevents the precipitation of silver compounds other than halides C It prevents the silver nitrate being precipitated. D It provides the acidic solution required for precipitation. Which shows the major product(s) formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide? A NaCl only B NaClO only C NaCt and NaClO	Which acid-base pair has the highest pH at the equivalence point? A CH ₃ COOH and NaOH B CH ₃ COOH and NH ₃ C HCl and NaOH D HCl and NH ₂ In the test for a halide ion in aqueous solution, dilute nitric acid is added before addition of silver nitrate solution. Why is nitric acid added? A It increases the concentration of nitrate ions. C It prevents the precipitation of silver compounds other than halides. C It prevents the silver nitrate being precipitated. D It provides the acidic solution required for precipitation. Which shows the major product(s) formed when chlorine reacts with cold, dilute, aqueous sodium hydroxide? A NaCl only B NaCl only C NaCt and NaClO

2 1

Do not write outside the box

1 7	Which	shows the ele	ctron configuration	of an atom of a transition m	etal? [1 mark]
	A [Ar] 4s ² 3d ⁰			0
	B [Ar] 4s ² 3d ⁸			•
	C [Ar] 4s ² 3d ¹⁰			0
	D [Ar] 4s ² 3d ¹⁰ 4p ¹			0
1 8	Which	will not act as	a ligand in the for	nation of a complex ion?	[1 mark]
	A CH	la :			•
	в со)			0
	C H ₂ C	0			0
	D NH	5			0
1 9		shows the cor H ₃) ₅ Ct]Ct ₂ ?	rect oxidation state	and co-ordination number of	of cobalt in [1 mark]
		oxidation state	co-ordination number		
	A	+2	5	[0]	

	oxidation state	co-ordination number	
A	+2	5	0
В	+2	6	0
С	+3	5	0
D	+3	6	6

2 0	Which statement is not correct?		Do not write outside the box
2 101	Winter Statement to Hot Consect	[1 mark]	
	A CuCl ₄ ³ - is square planar.	•	
	B NH ₄ * is tetrahedral.	0	
	C $[Co(H_2NCH_2CH_2NH_2)_3]^{2*}$ is octahedral.	0	
	D [Fe(H ₂ O) ₆] ²⁺ is octahedral.	0	
2 1	Which compound decolourises acidified potassium man	ganate(VII) solution? [1 mark]	
	A Al ₂ (SO ₄) ₃	0	
	B CuSO ₄	0	
	C FeSO ₄	•	
	D Fe ₂ (SO ₄) ₃	0	
2 2	Which has E-Z isomers?	[1 mark]	
	A C ₂ H ₂ Br ₂	•	
	B C₂H₃Br	0	
	C C ₂ H ₄ Br ₂	0	
	D C ₂ H ₅ Br	0	
	1122 1127 SS 1550 1555		
	Turn over for the next question		

2 3	Which is the mechanism for this conversion?		
	CH ₃	H ₂ Cl	
	$[()] \longrightarrow [()]$		
			te
			[1 mark]
	A Addition-elimination	0	
	B Electrophilic substitution	0	
	C Free-radical substitution		
	D Nucleophilic substitution	0	
2 4	Which compound decolourises bromine water in the absence of sur	nlight?	
1		III. III.	[1 mark]
	A CH₃CH₂CH₂Br	0	
	В		
	С		
	D CH3CH2CHCH2	\bigcirc	
2 5	Which compound reacts to form a ketone when warmed with an		
	acidified solution of potassium dichromate(VI)?		[1 mark]
	A CH₃CH₂CH₂OH	0	
	B (CH ₂)₂CHOH	œ	
	C CH3CH2CHO	0	
	D (CH ₃) ₂ CHCOOH	0	

2 6	Which does not contain an asymmetric carbon atom?	[1 mark]
	A CH ₃ CH(CH ₃)CH ₂ CH ₃	•
	B CH ₃ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃	0
	C CH₃CH(OH)CH₂OH	0
	D CH₃CH₂CHCICH₃	0
2 7	Which reaction involves addition-elimination?	[1 mark]
	A $(CH_3)_2CHB_\Gamma$ + $KOH \rightarrow CH_3CH=CH_2$ + KB_Γ + H_2O	0
	B CH3COCI + C6H5OH → CH3COOC6H5 + HCI	•
	C CH₃CH=CH₂ + Cl₂ → CH₃CHClCH₂Cl	0
	$\textbf{D} \ \ \text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \ + \ \text{NaOH} \ \rightarrow \ \ \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} \ + \ \text{NaBr}$	0
2 8	Which compound reacts with hydrogen bromide to give 2-brome the major product?	o-3-methylbutane as
		[1 mark]
	A (CH ₃) ₂ C=CHCH ₃	0
	B CH ₃ (CH ₂) ₂ CH=CH ₂	0
	C CH ₃ CH ₂ C(CH ₃)=CH ₂	•
	D (CH ₃) ₂ CHCH=CH ₂	0
	Turn over for the next question	

	Refer (
2 9	Which forms a polymer with ClOC(CH ₂) ₈ COCl?		[1 mark]
	A NH ₂ CH ₂ CH ₂ NH ₂	20	
	B (CH ₃ CO) ₂ O	0	
	C CH ₃ CH ₂ CONH ₂	0	
	D NH2CH2COOH	0	
3 0	Which structure shows the zwitterion of an amino acid?		[1 mark]
	$H_3 \mathring{N} - CH - COO^ A \qquad H_2C - CH_2 - CH_2 - \mathring{N}H_3$	0	
	H ₃ N — CH — COO ⁻ B H ₂ C — COO ⁻	0	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	
	$H_3\mathring{N} - CH - COO^ D \qquad $ $H_2C - SH$	•	
3 1	What is the minimum volume, in cm ³ , of 0.02 mol dm ⁻³ KMnO ₄ so oxidise 0.01 mol of VO ²⁺ ?	lution need	ed to
	$5 \text{VO}^{2+} + \text{MnO}_4^- + \text{H}_2\text{O} \rightarrow 5 \text{VO}_2^+ + \text{Mn}^{2+} +$	2H†	[1 mark]
	A 10	0	
	B 50		
	C 100	69	
	D 200	0	

	6.1		
3 2	Which is the concentration of NaOH(aq), in mol dm ⁻³ , that has pH =	= 14.30?	
	$K_{\rm w}$ = 1.00 \times 10 ⁻¹⁴ mol ² dm ⁻⁸ at 25 °C		[1 mark]
	A -1.16	0	
	$B 5.01 \times 10^{-15}$	0	
	C 2.00 × 10 ¹⁴	0	
	D 2.00	•	
3 3	What are the units of the rate constant for a third order reaction?		[1 mark]
	A mol dm ⁻³ s ⁻¹	0	
	B mol ⁻¹ dm ³ s ⁻¹	0	
	C mol ² dm ⁻⁸ s ⁻¹	0	
	D mol ⁻² dm ⁸ s ⁻¹	0	
3 4	What is the pH of 0.015 mol·dm ⁻³ sulfuric acid?		[1 mark]
	A -1.82	0	
	B -1.52	0	
	C 1.52	®	
	D 1.82	0	
	Turn over for the next question		

3 5	Which compound is formed when phenyl benzenecarboxylate is hy acidic conditions?	ydrolysed under	Do not with outside the box
		[1 mark]	
	A C ₆ H ₅ CH ₂ OH	0	
	B C ₆ H ₅ CHO	0	
	C C ₆ H ₅ COCH ₃	0	
	D C8HSCOOH	0	
3 6	A student rinsed the apparatus before starting an acid-base titration. The results of the titration showed that the volume of acid added from the burette was larger than expected.		
	Which is a possible reason for this?		
		[1 mark]	
	A The conical flask was rinsed with water before the titration.	0	
	B The walls of the conical flask were rinsed with water during the titration.	0	
		0	
	C The pipette was rinsed only with water.		

END OF QUESTIONS

